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Abstract
Technological advances in psychological research have enabled large-scale studies of human behavior and streamlined 
pipelines for automatic processing of data. However, studies of infants and children have not fully reaped these benefits 
because the behaviors of interest, such as gaze duration and direction, still have to be extracted from video through a 
laborious process of manual annotation, even when these data are collected online. Recent advances in computer vision 
raise the possibility of automated annotation of these video data. In this article, we built on a system for automatic gaze 
annotation in young children, iCatcher, by engineering improvements and then training and testing the system (referred 
to hereafter as iCatcher+) on three data sets with substantial video and participant variability (214 videos collected in U.S. 
lab and field sites, 143 videos collected in Senegal field sites, and 265 videos collected via webcams in homes; participant 
age range = 4 months–3.5 years). When trained on each of these data sets, iCatcher+ performed with near human-level 
accuracy on held-out videos on distinguishing “LEFT” versus “RIGHT” and “ON” versus “OFF” looking behavior across 
all data sets. This high performance was achieved at the level of individual frames, experimental trials, and study videos; 
held across participant demographics (e.g., age, race/ethnicity), participant behavior (e.g., movement, head position), 
and video characteristics (e.g., luminance); and generalized to a fourth, entirely held-out online data set. We close by 
discussing next steps required to fully automate the life cycle of online infant and child behavioral studies, representing 
a key step toward enabling robust and high-throughput developmental research.
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Where infants look, and for how long, has served as a 
primary outcome measure for developmental psychology 
since the birth of the field (Friedman, 1972; Haith, 1980; 
Horowitz et al., 1972; Slater et al., 1984; Teller, 1979). 
Experiments measuring infants’ looking behavior have 
delivered insights into the developmental origins and 
nature of perception (Aslin & Smith, 1988), learning 
(Kirkham et al., 2002; Saffran et al., 1996), categorization 
(Waxman & Markow, 1995; Xu et al., 1999), preference 
for stimuli such as faces (Simion et al., 2008; Valenza 
et  al., 1996), language processing (Lew-Williams & 
Fernald, 2007; Lukyanenko & Fisher, 2016), and under-
standing of domains such as people, objects, and num-
ber (Baillargeon et  al., 2016; Feigenson et  al., 2004; 
Hamlin et al., 2007; Spelke et al., 1992). Yet discovery 
in the field is constrained by two key bottlenecks that 
slow the pace of empirical research and limit its robust-
ness and generalizability. The first obstacle is recruiting 
and testing adequately powered samples of infants 
(Byers-Heinlein et al., 2022; Frank et al., 2017; Oakes, 
2017). Online platforms such as Lookit (Scott & Schulz, 
2017) have been developed to allow families to partici-
pate in studies online via webcam, which enables faster 
and more efficient data collection, potentially in a much 
more diverse population than ever before.

Nevertheless, even with rapid data collection, a sec-
ond obstacle still looms large: annotating video data 
from infants to produce outcome measures such as dura-
tion and direction of gaze. Roughly speaking, it takes an 
experienced human annotator 2 to more than 10 times 
as long as the duration of a video to generate outcome 
labels for that video, depending on the complexity and 
resolution of the measures and the characteristics of the 
video (e.g., movement, lighting). In this article, we 
expand on a promising system designed specifically for 
classification of young children’s looking behavior, 
iCatcher (Erel et al., 2022; but see also Chouinard et al., 
2019 and Werchan et al., 2022). We demonstrate its suit-
ability for use in developmental research by (a) engi-
neering technical improvements to iCatcher to extract 
accurate and robust frame-by-frame labels of gaze 
behavior from large video data sets of infants and tod-
dlers in variable environments and (b) showing that the 
system’s performance parallels the reliability of “gold-
standard” manual annotation.

iCatcher: Solving the Gaze-Annotation 
Bottleneck

In the last decade, new tools in computer vision have 
enabled the estimation of gaze behavior given webcam 
videos, including OpenFace (Baltrusaitis et  al., 2018), 
RT-GENE (Fischer et al., 2018), WebGazer (Papoutsaki 
et  al., 2016), and Opengazer (Zielinski, 2007). These 

tools rely on extracting eye features and facial landmarks 
(e.g., eyes, nose, mouth) from video, which are then 
passed to deep-learning models to predict gaze direc-
tion. However, these approaches have been developed 
for relatively still adult faces, not squirming infants, and 
require high-quality video data, a condition that  
is often not met in online developmental studies (cf. 
Werchan et  al., 2022). They also often require some 
manual labor and/or show reduced performance when 
videos contain variation in superficial features such as 
lighting conditions. Erel and colleagues (2022) impro
ved these solutions by creating an openly available pro-
gram, iCatcher, a neural-network approach rooted in 
computer-vision methods and specifically designed for 
the needs of research with infants and young children. 
iCatcher showed higher accuracy in estimating real-time 
gaze location relative to prior approaches by applying 
one key insight: Successive video frames are not inde-
pendent from one another. iCatcher uses a moving win-
dow of five frames to estimate the gaze direction of the 
center frame (LEFT, RIGHT, or AWAY) and does so itera-
tively throughout a video recording of a child’s face. This 
feature of the network architecture (among others) 
allows the neural network to be trained to classify eye 
gaze in a set of participant videos with somewhat higher 
accuracy than RT-GENE and dramatically higher accu-
racy than OpenFace.

Open Questions About Accuracy  
and Robustness to Video, Participant, 
and Experiment Variability

For iCatcher to become a viable tool for studies of cog-
nitive development, particularly as the field is moving 
toward online data collection from more representative 
participant samples, iCatcher must be accurate (perform-
ing with near-human accuracy), robust (accurate over 
sources of video, experiment, and participant variabil-
ity), and usable (accessible to all researchers in the 
field). Here, we focus on accuracy and robustness, leav-
ing the challenge of usability for future work.

First, iCatcher should be able to support studies of 
infants and children tested in the lab, in the field, and 
at home (Tsuji et al., 2021). Erel et al. (2022) showed 
that iCatcher delivered human-level performance in one 
video data set, drawn from one lab, in which all par-
ticipants were tested in the same setup (holding view-
ing distance, screen size, camera position, lighting, and 
backdrop constant). However, labs vary substantially 
in their methods and setups for in-person testing. 
Online testing introduces even more variability (for 
examples of still frames from webcam videos, see Fig. 
1c). Ideally, iCatcher could be used to support online 
research on the Lookit platform (Scott & Schulz, 2017) 
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and tolerate the many sources of variability in the 
resulting videos.

Second, iCatcher needs to perform with high accuracy 
for children of varying age, race, and ethnicity. The video 
data set in Erel et al. (2022) included children ages 1.5 
to 6 years in a majority-White sample recruited from one 
geographic area, leaving open possible gaps in perfor-
mance for younger infants or children of different races 
and ethnicities. Given that looking behavior is a pre-
dominant dependent measure used for studies of infants 
in the first 18 months of life (e.g., Aslin, 2007, Oakes, 
2012), and perhaps the easiest video-based measure to 
implement in large-scale unmoderated web experiments, 
it is vital to investigate whether iCatcher can be used to 
study a diverse range of infants within their first year of 
life. And although the field of developmental psychology 
tends to study White children from middle- or upper-
class backgrounds (Roberts et al., 2020), online research 
has the potential to enable many more families to par-
ticipate in science by lowering the time and energy cost 
for participation. In our view, iCatcher should support 
this goal of broadening participation and thus be held 
to a standard of robustness for children of varying demo-
graphics (i.e., a tool that provides human-like accuracy 
for White infants but not participants of other races is 
not a usable tool).

Third, iCatcher should deliver accurate annotations of 
looking behavior for studies across experimental para-
digms, research questions, dependent variables, and 

annotation guidelines. Our goal, therefore, was to 
develop, train, and test a new version of iCatcher (referred 
to hereafter as iCatcher+) on three data sets collected in 
substantially different settings (online vs. in the lab vs. 
outside of the lab), on different topics (intuitive physics 
vs. language comprehension), in participants varying in 
age and race/ethnicity, and with different protocols for 
annotating looking behavior.

Present Research

In sum, iCatcher holds promise for solving the problem 
of automated gaze annotation from videos of infant and 
child participants, but its accuracy has not been tested on 
more diverse and challenging data sets, and its perfor-
mance has not been evaluated in the terms most relevant 
to researchers in developmental psychology. Here, we 
tackle these aims and show that iCatcher+ can be used 
to reliably annotate infants’ and young children’s looking 
behavior at home, in the lab, and in the field; in partici-
pants of varying race, ethnicity, and age; and in videos 
that vary substantially in background, screen size, viewing 
distance, participant pose, and luminance. In anticipation 
of the challenges presented by the three data sets in this 
work, we made several technical improvements to the 
architecture presented by Erel et al. (2022). Then, we 
subjected iCatcher+ to a training and testing regime that 
balances key participant demographic variables such as 
age, race/ethnicity, and gender. The network was trained 

Fig. 1.  Still frames from the (a) California Black and White (California-BW), (b) Senegal, and (c) Lookit data sets. Children’s faces in Figs. 
1a and 1b have been blurred to protect participant identity. Families featured in Fig. 1c gave explicit permission for pictures and videos to 
be shared for public use.
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from human annotations to classify looking behaviors as 
directed toward the left or right side of the stimulus dis-
play (LEFT vs. RIGHT) or away from the stimuli (AWAY) 
and then tested on held-out videos.

We show that the network generalizes to held-out 
videos from the same data set as training, with near-
human trial-level performance for LEFT and RIGHT 
looks (with room to grow for frame-by-frame perfor-
mance for the data set collected online) and lower per-
formance for AWAY. In addition, we show that the failure 
modes and confidence scores produced by the model 
are interpretable, which allows iCatcher+ to be incorpo-
rated in more efficient machine-assisted research proto-
cols. Finally, we show that the network generalizes not 
only to held-out videos from the same data set it was 
trained on but also to videos from a novel, fourth data 
set collected online using different methods and stimuli. 
Throughout the article, we present the model’s perfor-
mance in terms relevant to developmental psychologists, 
including frame-by-frame, trial-level, and video-level 
comparisons between human-to-human reliability and 
human-to-iCatcher+ reliability. We end by discussing the 
potential impact of this tool for the field of developmen-
tal psychology, giving recommendations for develop-
mental labs hoping to adopt this tool, and previewing 
steps to further improve accuracy and generalizability.

Method

Nontechnical overview of approach

There are two key tasks in the current research: (a) 
improving the iCatcher model and designing a training 
regime appropriate for the video classification problem 
at hand and (b) testing its performance on videos it has 
not seen before. In this section, we define key terms and 
describe the iCatcher+ model and procedures for evalu-
ating it in general, nontechnical terms. A more detailed 
technical description of the architecture can be found 
in Erel et al. (2022) and the following section titled 
“Model Overview.”

“Model structure” consists of defining a specific task 
for the model to perform, breaking the problem of solv-
ing it into a series of subproblems, and then designing 
an architecture to solve each subproblem in turn. For 
this project, the (human and machine) rater’s task is to 
label whether a participant is looking toward the left or 
right side on the screen or away from the screen in each 
frame of the video. iCatcher+ does this by detecting all 
the potential faces in a particular video frame, choosing 
the face most likely to be the participant’s face, extract-
ing the pixel values and other information from that face 
patch, and mapping the features from a stack of five 
consecutive video frames to a label for the middle frame, 

corresponding to the participant looking LEFT, RIGHT, 
or AWAY (Fig. 2). These steps may give researchers an 
intuition for what could drive differences between model 
and human performance: For example, although it is 
trivial for humans to find a participant’s face in a frame, 
iCatcher+ has to be trained explicitly to correctly reject 
face-like patches (e.g., dolls, body parts) and faces that 
are not the participant’s face (e.g., faces of caregivers 
and siblings).

“Model training” consists of tuning the network to the 
specific kinds of data it is learning to label, by using 
feedback to adjust model weights. During training, we 
compared the model’s labels with human rater(s) trained 
to reliably perform this task and assume the human can 
generate the correct label. Feedback consists of compar-
ing the network’s guesses with the ground truth (the 
human rater’s label) and updating its weights in an effort 
to increase accuracy. After model training is “model 
evaluation.” During model evaluation, we provided 
iCatcher+ with new frames to label with no further feed-
back and compared its responses with human raters. 
This allowed us to test the accuracy of the model and 
to collect information about its failure modes (the infor-
mation it has failed to learn during training).

There are several important considerations for model 
evaluation. First, the model needs to be evaluated on 
independent data to show that the model did not just 
memorize the correct labels for a particular set of 
frames. Instead, some video and annotation data are 
used to train the model, and other videos are “held out” 
of the training set so that they can be used for testing 
the model. Second, because we wanted to compare 
model and human reliability, we no longer assumed that 
a single human rater is 100% correct during testing. In 
fact, human raters do not agree 100% of the time, and 
the extent to which two trained raters disagree provides 
a data-set-specific benchmark for performance (hard 
data sets have lower interrater reliability; see Table 2 in 
Results section). Instead of comparing human and 
model annotations, we compared two kinds of agree-
ment: agreement between two human raters (human–
human) and between a human rater and the model 
(human–model). Human–human agreement is already  
a common measure of reliability in developmental 
psychology.

How different should the evaluation videos be from 
the training videos? As aforementioned, testing the 
model on the same frames it was trained on is not useful 
for evaluating generalization (i.e., how well iCatcher+ 
classifies new videos). At the other extreme, it is not 
reasonable, at least in early stages, to expect iCatcher+ 
to reliably annotate videos that are from a completely 
different distribution (e.g., comparing performance on 
videos of newborns tested in a crib with 4-year-old 
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children tested outdoors on a playground). Thus, we 
began with a test of narrow generalization by evaluating 
the model on held-out videos within each of the three 
data sets. We then present one case study of far gener-
alization in which the model trained on webcam videos 
collected asynchronously on the Lookit platform is tested 
on a separate data set of webcam videos collected via 
synchronous video conferencing.

Finally, the question of how well the model performs 
relative to a human rater can only be answered with 
respect to specific outcome metrics and specific mea-
sures of interrater reliability: Although the model gener-
ates a label for every frame, this is rarely the actual 
dependent measure of interest. In this article, we use 
outcome measures familiar to developmental psycholo-
gists, such as total looking time over the course of a trial 
or percentage looking to the right or left side of the 
screen. We show that trial-level human–model reliability 
is within the range of human–human reliability reported 
in studies from developmental psychology, and thus the 
model can be considered as reliable as a trained human 
annotator when it comes to trial-level measures. In the 

following sections, we provide a more detailed overview 
of the data sets, model, and training and testing regime.

Data set overview

Past research has already shown that iCatcher can be 
trained to reliably classify one video data set, but for 
the current research, we wanted to include video data 
sets with different and more variable video and partici-
pant characteristics. We chose three video data sets, one 
collected in the lab and in the field using a mobile test-
ing trailer in the United States (California Black and 
White Video [California-BW]), one collected in the field 
using a mobile testing tent in Senegal (Senegal), and 
one from the Lookit online platform (Lookit), across a 
sample of infants and young children ages 4 months to 
3.5 years. An overview of the three data sets is shown 
in Table 1, and example frames from each data set are 
shown in Figure 1. We briefly discuss the features of 
the entirely held-out data set, collected via Zoom, used 
in this article to test for far generalization in the Results 
section.
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One challenge in automating gaze classification is that 
every lab follows idiosyncratic annotation procedures. 
Because the model learns to infer exactly three classes 
of behavior (i.e., looking LEFT, RIGHT, and AWAY), it is 
important to understand how the human annotations 
were generated in each data set and how these annota-
tions should be mapped to each of the three categories. 
The manuals used to train human annotators for the 
three data sets are openly available at https://osf.io/
zgcb9/ (California-BW, Senegal) and https://osf.io/42hpq 
(Lookit). Each human rater was trained using these man-
uals on a set of example videos until they obtained at 
least 90% frame-by-frame agreement before working on 
the videos in this data set. Across all data sets, human 
raters were naive to experimental conditions and the stim-
uli displayed and annotated each video independently 
from other raters. Disagreements between raters were not 
resolved before training and testing with iCatcher+. Each 
data set also specifies frames to be included for analysis: 
calibration sequences and experimental trials in which 
stimuli were shown on the screen, and participant gaze 
direction is of analytical interest. We excluded from 
analysis all other video segments, including setup time, 
intertrial intervals, and pauses, which did not contain 
relevant looking behaviors (see Fig. 3a, white portions 
of timeline for Human 1 and Human 2 annotations).

Below, we provide a brief overview of each data set, 
including specific definitions for the three classes of 

looking behaviors to be learned by iCatcher+ (for details, 
see Tables S2 and S3 in the Supplemental Material avail-
able online).

California-BW.  The California-BW data set, including 
214 videos of 214 English- and Spanish-speaking children, 
was aggregated from 15 studies conducted in northern 
California. The studies measured young children’s gaze 
behavior to study their real-time word comprehension.  
In the looking-while-listening (LWL) procedure (Fernald 
et al., 2008), children view pairs of pictures (e.g., ball and 
cookie) on a screen and listen as one of the pictures is 
named (“Where is the ball?”). Looks to the target stimulus 
from the onset of the key disambiguating word (e.g., “ball” 
in “Where is the ball?”) yield high-resolution measures of 
speech-processing efficiency and comprehension. Studies 
using the LWL procedure have shown that infants’ speech-
processing efficiency increases dramatically over the 
course of the second year (Fernald et al., 1998) and that 
individual differences in speed of language processing are 
related to later verbal and nonverbal skills (Fernald & 
Marchman, 2012; Marchman & Fernald, 2008). All research 
for this data set was approved by the Stanford University 
Institutional Review Board, and informed consent was 
obtained from a parent or guardian.

Children were tested in a dark and quiet room in a 
developmental lab or mobile testing space (a recreational 
vehicle retrofitted for LWL data collection) and video 

Table 1.  Overview of Data Sets

California Black and White Video Senegal Lookit

Number of children 
and videos

214 children, 214 videos 143 children, 143 videos 83 children, 265 videos

Research setting University campus lab and 
mobile lab brought into 
communities

Community spaces in 
participating villages

Homes of participating families

Research topic Language comprehension Language comprehension Intuitive physics

Participant age range 15–39 months (M = 24.46,  
SD = 6.46)

20–42 months (M = 30.90, 
SD = 6.41)

4–14 months (M = 9.03,  
SD = 2.33)

Participant gender 107 (50%) female, 107 (50%) 
male

64 (45%) female, 79 (55%) 
male

44 (53%) female, 39 (47%) male

Participant race/
ethnicity

112 White, 42 multiracial, 42 
Latine, 13 Asian, 5 Black

143 Black 62 White, 15 multiracial, 3 Latine, 
3 Asian, 1 Black

Participant posture Children sitting in caregivers’ lap Children sitting in 
caregivers’ lap

Children mostly held over 
caregivers’ shoulder (94% 
of videos with this starting 
position)

Video characteristics Black and white videos, 720 × 480 
pixels

Color videos, 640 × 400 
pixels

Color videos, 640 × 480 pixels

Screen characteristics Stimuli presented at 36 × 50 cm 
per picture in the university lab 
and at a smaller standardized 
ratio in the mobile lab; 
participants seated 3 ft away

Stimuli presented on 
a 17-in. laptop at a 
viewing distance of 
approximately 2 ft

Variable screen size (laptop  
and desktop computer screens) 
and viewing distance

https://osf.io/zgcb9/
https://osf.io/zgcb9/
https://osf.io/42hpq


Advances in Methods and Practices in Psychological Science 6(2)	 7

recorded with a night-vision camera, yielding black-and-
white videos of children’s gaze patterns. Auditory stimuli 
were produced by a native English- or Spanish-speaking 
female speaker in a friendly, child-directed register. Visual 
stimuli were projected onto either side of a screen at a 
size of 36 × 50 cm per picture at the developmental lab 
and presented at a smaller ratio on a 55-in. LED screen 
at the mobile testing space. Children were seated on 
their caregiver’s lap approximately 3 ft away from the 
displays. Cameras were placed in the center directly 
below the screen, roughly at the child’s eye level. Adults 
wore dark glasses made opaque with dark tape over  
the lenses to minimize caregiver interference. Before the 
session, experimenters helped the caregiver and child to 
get seated in the testing space. During the study, the 

experimenter observed the child and caregiver in a con-
trol booth and could communicate with the particiIants 
if needed through an intercom (see Fig. 1a).

More than 25 research assistants contributed to human 
annotation of eye gaze across the 15 studies in this data 
set. Each child contributed one video session of 24 to 
48 trials, and each trial lasted between 3 and 6 s. Human 
raters manually labeled each 33-ms frame as looking to 
the left or right picture (LEFT vs. RIGHT for iCatcher+) 
or as away or off during gaze shifts between pictures 
and during looks away from the screen (both mapped 
to the AWAY label). Trials that were excluded because 
of child inattention, experimenter error, or external inter-
ference were prescreened by human raters before anno-
tation, and thus all the annotations available for training 
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and test come from relatively “clean” trials (for pre-
screening protocol, see https://osf.io/dshkr). All included 
trials for each video were annotated by two research 
assistants to assess interrater reliability. The detailed 
annotation scheme is shared at https://osf.io/zgcb9/ and 
in Table S2 in the Supplemental Material.

Senegal.  The Senegal data set was drawn from a field-
based longitudinal study that assessed real-time word 
comprehension using the LWL procedure described above. 
Data were collected in partnership with a local nongov-
ernmental organization and participating Wolof-speaking 
villages located in a single rural region of Senegal. All 
research for this data set was approved by the Stanford 
University Institutional Review Board, and informed con-
sent was obtained from a parent or guardian.

Children were assessed in a quiet and low-traffic 
indoor community space within each village, although 
the level of background activity varied across testing 
sites. To reduce visual distraction, a portable 5 × 5 ft 
cabana enclosed a small table and a 17-in. laptop com-
puter presenting stimuli. The laptop keyboard was 
obscured with a black cover. Children were seated on 
their caregiver’s lap at the entrance of the cabana 
approximately 2 ft from the laptop display. Visual and 
auditory stimuli were designed to be appropriate for the 
region (e.g., images showing local animals, objects, and 
food described in the Wolof language). Two portable 
speakers placed behind the laptop played recordings of 
sentences produced by a native Wolof-speaking female 
speaker using a register judged to be appropriate for 
children of this age range. Children’s gaze behavior was 
recorded on a camcorder positioned with a tripod 
behind and above the center of the laptop screen. An 
experimenter was present to provide technical support 
and instructions to participating families. Caregivers 
wore opaque glasses to obscure visual stimuli and 
reduce the potential for interference (see Fig. 1b).

A Senegalese team of research assistants prescreened 
trials for exclusionary criteria and manually rated each 
33-ms frame as LEFT, RIGHT, or AWAY following the 
protocol described for the California-BW data set above. 
Details for this prescreening and annotation scheme are 
available at https://osf.io/dshkr and https://osf.io/
zgcb9/, respectively, and in Table S2 in the Supplemental 
Material. Approximately half of all included trials for 
each video were annotated by two research assistants 
to measure interrater reliability.

Lookit.  The Lookit data set includes 265 videos of 83 
infants, tested at home via the Lookit platform (Scott & 
Schulz, 2017), in a study of physical understanding. This 
study was designed to use the Lookit online develop-
mental lab to conduct dense repeated sampling of infants’ 

looking behavior. Families were invited to participate in 
as many as 12 sessions over 2 months. The primary mea-
sure of this study was preferential looking (left vs. right) 
to videos that violated a previously documented early-
emerging physical expectation (e.g., unsupported objects 
fall, objects are solid; Baillargeon et  al., 2016; Spelke 
et al., 1992). In each trial, two videos played simultane-
ously, one on the left side and one on the right side of the 
screen. The videos showed a single object in an event 
that was either physically plausible (e.g., a hand places a 
ball in the middle of an inclined ramp, releases it, and the 
ball accelerates down the ramp) or physically implausible 
(e.g., upon release, the ball accelerates up the ramp). The 
study was approved by the Massachusetts Institute of 
Technology Institutional Review Board, and informed 
consent was obtained from a parent or guardian before 
participation.

In each video from the Lookit data set, participants saw 
up to twenty-four 20-s trials while a webcam recorded 
their looking behaviors. The video recording of each ses-
sion was a concatenation of separate recordings from each 
portion of the experiment (e.g., parental consent, setup, 
each trial). No experimenter was present to provide syn-
chronous guidance to caregivers. Instead, caregivers were 
provided with detailed instructions for how to set up the 
study, such as ensuring infants’ faces were captured in the 
webcam feed and illuminated from the front with minimal 
backlighting. Caregivers were instructed to face away from 
the screen and to hold infants over their shoulders (this 
was the starting posture for 94% of videos), although 
infants did, in rare cases, sit on their caregiver’s lap or in 
chairs by themselves. This resulted in videos that varied 
significantly in infant position, viewing distance and video 
illumination, resolution, and background (see Fig. 1c).

Twenty-four trained research assistants contributed to 
the annotation of this data set. Human raters manually 
labeled each frame (at 33-ms intervals) as directed 
toward the left or right of the screen (LEFT, RIGHT) or 
away from the screen (AWAY). Each video was annotated 
by one research assistant, and a random subset of videos 
(23%) was annotated by a second rater to assess inter-
rater reliability. The detailed annotation scheme is avail-
able at https://osf.io/pq6ng/ and in Table S3 in the 
Supplemental Material.

Differences between data sets.  These three data sets 
were selected because they differ from each other and from 
the original data set used in Erel et al. (2022) in important 
ways, including research setting (lab vs. field site vs. online), 
study topic (language development vs. intuitive physics), 
age range (infants 1 year old or younger vs. 2- and 3-year-
olds), and mode of data collection (experimenter present 
vs. absent). In particular, the between-video variability in 
the Lookit data set is substantially higher than in the 

https://osf.io/dshkr
https://osf.io/zgcb9/
https://osf.io/dshkr
https://osf.io/zgcb9/
https://osf.io/zgcb9/
https://osf.io/pq6ng/
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California-BW and Senegal data sets in terms of screen size, 
backdrop, camera position, child posture and movement, 
viewing distance, and lighting—features that were stan-
dardized in the other two data sets. Whereas videos in the 
California-BW and Senegal data sets were collected at a 
constant frame rate (30 frames per second), all videos in the 
Lookit data set were collected at variable frame rates 
(because of the usage of webcams and other devices that 
do not keep a constant frame rate) but resampled to 30 
frames per second for consistency before being annotated 
and passed to the iCatcher+ model. Because these three 
data sets differ from each other in many ways, it is hard to 
pinpoint the cause(s) of differences in classification accu-
racy in the absence of more closely matched data sets, ide-
ally with random assignment (though see the Results 
section, wherein we explore the factors that are associated 
with better performance).

A last key difference between the data sets is the 
human-annotation protocols (for a detailed description 
of these annotation schemes, see Tables S2 and S3 in 
the Supplemental Material). All data sets define prefer-
ential looking between the left versus right side of the 
screen to be the primary dependent measure, but there 
are also subtle and important differences in the annota-
tion schemes across data sets. First, before gaze annota-
tion, human raters prescreened the California-BW and 
Senegal data sets and excluded trials with excessive 
participant fussiness, distraction, or caregiver interfer-
ence or insufficient infant attention. The Lookit data set 
was not prescreened, so the annotations include trials 
in which the infant was fussing or inattentive. Second, 
the data sets differ in the treatment of looking behavior 
that was not directed to either the left or right stimulus 
but nevertheless was still directed toward the screen. 
Because the measures of interest in the California-BW 
and Senegal data sets were the reaction time of gaze 
shifts from a distracter to target image (e.g., gaze shift 
from image of cookie to ball upon hearing “Where’s the 
ball?”) and the overall the time spent looking at each of 
the two specific image locations, these transitional looks 
were annotated by humans as “off” (i.e., on the screen 
but off-stimulus) and mapped to the iCatcher+ label of 
AWAY. In contrast, all looks toward the screen in Lookit 
were annotated by humans as either LEFT or RIGHT 
(including transitional looks between stimuli). Thus, 
although we take looking duration as the sum of the 
time within a trial that a participant looks LEFT or RIGHT 
in all data sets, in California-BW and Senegal, this 
includes only frames in which the participant was look-
ing at one of the two images. Third, in the California-BW 
and Senegal data sets, human raters only annotated gaze 
fixations that lasted at least three frames (100 ms) and 
only annotated gazes as off target or away from the 
screen that lasted at least six frames (200 ms). No such 

criteria were implemented in the Lookit data set; thus, 
gaze shifts could be more frequent or brief.

Model overview

In this section, we provide a general overview of iCatcher+ 
(for details, see Erel et al., 2022, and the Supplemental 
Material). As shown in Figure 2, iCatcher+’s model archi-
tecture consists of three major components, a face detec-
tor, a face classifier, and a gaze classifier, all operating on 
five consecutive frames at a time, hereafter referred to as 
a “data point.” The goal of the system is to predict the 
category of gaze (LEFT, RIGHT, AWAY) for the middle 
frame within this moving window of five consecutive 
frames. During training, all data points were prepared 
during preprocessing, and during evaluation, data points 
were created on the fly, enabling the potential for annota-
tion to occur in real time while the experiment is running. 
The face detector (Fig. 2a) extracts potential portions of 
the image that plausibly contain the participant’s face. 
Candidate patches are then fed into the face classifier 
(Fig. 2b), which determines whether the patch belongs 
to an infant or adult, and if multiple candidate faces are 
found, which face is most likely to belong to the partici-
pant. The five selected patches from each data point, 
together with their size and x-y position in the frame, are 
then fed to iCatcher+’s gaze classifier (Fig. 2c). This com-
ponent estimates the discrete gaze direction for the mid-
dle frame.

Face detector.  Just as in Erel et al. (2022), we used the 
face detector provided by OpenCV (Bradski, 2000). This 
off-the-shelf detector was not trained by us or tuned 
toward extracting infant faces. In addition to returning 
potential face patches, the face detector outputs a confi-
dence score between 0 and 1 for each potential face, 
which we used to filter out the patches using a threshold 
of 0.7 in all our experiments. The output from this compo-
nent is a list of the upper-left and bottom-right coordinates 
of the pixels of each candidate patch.

Face classifier.  Because the candidate patches from the 
face detector may contain adults, body parts, and even 
objects, we passed the patches through a face classifier 
tasked with selecting the patch most likely to contain the 
participant’s face. To this end, a separate neural network 
was trained to distinguish between patches of infants and 
noninfants. The full architecture and training procedure of 
the face classifier are described in the Supplemental Mate-
rial. Furthermore, we added an additional constraint to 
protect against selection of face patches from different 
people across consecutive frames. To do this, we first fil-
tered the candidate patches to only those likely to contain 
infant faces. If more than one candidate patch remained, 
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we chose the closest patch relative to the selected patch 
from the previous frame (Fig. 2b). Hence it is possible, in 
principle, for a wrong face to be selected if the participant 
moves out of frame and another child’s face is detected. 
During training, if the face classifier could not return a face 
patch for one or more of the five frames in the data point, 
we disregarded it (see Fig. S1 in the Supplemental Mate-
rial). During testing, if the face classifier did not return a 
face, we used a placeholder of all black pixels instead, and 
the data point was still considered valid as long as the mid-
dle frame was judged to contain the participant’s face. This 
behavior ensures that the data set is “clean” for training yet 
quite robust to missing information during evaluation (e.g., 
even if only one frame in a five-frame sequence contains 
the infant’s face, we can still classify that frame).

Gaze classifier.  Given a data point consisting of five con-
secutive face patches and their spatial information (height, 
width, size, and center coordinates), the gaze classifier is 
tasked with predicting the gaze direction of the middle 
frame. The direction is encoded by three discrete classes: 
AWAY, LEFT, and RIGHT. During training, we passed all 
data points from the data set through a RandAugment 
(Cubuk et al., 2020) block, which performs various random 
image-level augmentations. In randomly selected frames, 
we also horizontally flipped the five image patches, their 
respective spatial information (the Center of Patch × Coor-
dinate), and their label (i.e., LEFT becomes RIGHT, RIGHT 
becomes LEFT, and AWAY is kept the same). These aug-
mentations were not activated during evaluation. The gaze 
classifier itself is a neural network consisting of a feature 
extractor that is a pretrained ResNet18 (He et al., 2016) and 
a classifier that consists of three fully connected layers. 
Cross-entropy loss was used for optimization. The full 
architecture and training procedure are described in the 
Supplemental Material.

Classification output.  Given a video, iCatcher+ returns 
frame-by-frame labels (LEFT, RIGHT, AWAY) for all frames 
within that video in which a participant’s face was identi-
fied and a confidence score for each class that sums up to 
1 (e.g., 0.1 for LEFT, 0.8 for RIGHT, and 0.1 for AWAY). For 
frames in which no face was identified, iCatcher+ returns 
a label of INVALID, which can be broken down into the 
subcategories of NOFACE (if no faces were detected at all 
in that frame) and NOBABYFACE (if faces were detected 
by the face detector but no participant faces were found 
by the face classifier). For illustrations of this output over-
laid on video data, see https://osf.io/frmgx/.

Data set splitting for training, 
validation, and test

In the previous sections, we described iCatcher+’s archi-
tecture and the three video data sets that are the focus 

of the current work. In this section, we describe a pro-
cedure for splitting the data to evaluate model perfor-
mance. A “split” in this context is an assignment of each 
video in the data set to one of the following subsets: 
“training,” “validation,” and “test.” We trained iCatcher+ 
on the training set, then assessed the quality of the train-
ing procedure using the validation set. The performance 
on the validation set provides a rough estimate for the 
performance on the test set during training but is not 
included in any training or in the final results. The test 
set consists of unseen videos, and performance of the 
trained model on this test set provides a proxy for model 
performance on new videos that are similar to the train-
ing distribution. The test set was not used to improve 
iCatcher+ either directly (optimization) or indirectly 
(hyper-parameter tuning), thus ensuring that perfor-
mance on the test set is driven only by the model’s ability 
to generalize from training.

We used stratified random sampling to assign videos 
to the training, validation, and test sets. First, we divided 
individual infant participants into mutually exclusive 
strata defined by all possible combinations of key demo-
graphic variables. For example, one stratum in the Lookit 
data set was defined by “4-6-months old, White, females.” 
Next, within each stratum, we assigned a fixed propor-
tion of infants into a training set (approximately 70% for 
California-BW and Senegal; 80% for Lookit1) and the 
remaining infants to a test set. We further sampled 10% 
of the infants within the training set for validation (for 
final counts, see Table 2). This procedure ensured that 
the multivariate demographic distribution in each data 
set reflects that of the overall data set, and that the  
test set included infants that did not appear in the train-
ing set. The California-BW data set was split according 
to age (in 4-month bins), gender (male or female), race/
ethnicity (White: n = 112, 52%; other: n = 102, 48%), and 
by preterm birth (<33 weeks’ gestation: n = 72 or 34%), 
which is a plausible predictor of delays in early language 
processing. The Senegal data set, consisting of Black 
Senegalese children, was split according to age in 
4-month bins and gender (male or female). The Lookit 
data set was split according to age (in 3-month bins 
because of narrower range, using earliest age of partici-
pation for infants who contributed data to multiple vid-
eos), gender (male or female), and race/ethnicity (White: 
n = 62, 75%; other: n = 21, 25%).

We preprocessed each data set to maximize informa-
tion for model training and evaluation. For model train-
ing, we excluded frames for which human raters 
disagreed (for breakdown of included and excluded 
frames for training, see Fig. S1 in the Supplemental Mate-
rial). Although all included trials in all videos in the 
California-BW data set were annotated by two human 
raters, only about half the trials in all videos from the 
Senegal data set and a random subset (n = 16) of videos 

https://osf.io/frmgx/
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Table 2.  Summary of Main Results

Data set

N videos in 
training / 

validation / 
test (N trials)

% Invalid frames 
flagged by 

model [95% CI] Comparison % Agreement Cohen’s κ

ICC 
looking 

time

ICC 
percentage 

right

California 
Black and 
White Video 
(iCatcher+)

135 / 15 / 64 
(1,861 trials 
in test set)

15.01%  
[11.37%, 19.14%]

H1 - H2 97.79%  
[97.11%, 98.32%]

0.96  
[0.95, 0.97]

0.94  
[0.91, 0.97]

0.99  
[0.99, 1.00]

H1 - M 95.11%  
[93.56%, 96.33%]

0.91  
[0.89, 0.93]

0.90  
[0.86, 0.94]

0.96  
[0.93, 0.98]

Senegal 
(iCatcher+)

89 / 9 / 45 
(576 trials 
in test set)

17.19%  
[13.42%, 21.54%]

H1 - H2 98.05%  
[97.56%, 98.51%]

0.97  
[0.96, 0.97]

0.94  
[0.92, 0.97]

0.99  
[0.98, 1.00]

H1 - M 90.91%  
[87.25%, 93.61%]

0.85  
[0.80, 0.89]

0.89  
[0.83, 0.94]

0.95  
[0.90, 0.98]

Lookit (iCatcher+) 148 / 8 / 45 
(1,026 trials 
in test set)

20.66%  
[16.59%, 25.40%]

H1 - H2 90.99%  
[89.57%, 92.31%]

0.85  
[0.83, 0.87]

0.95  
[0.93, 0.97]

0.89  
[0.85, 0.92]

H1 - M 85.23%  
[83.46%, 86.97%]

0.75  
[0.72, 0.78]

0.95  
[0.93, 0.97]

0.81  
[0.73, 0.88]

Lookit (original 
iCatcher)

148 / 8 / 45 
(1,026 trials 
in test set)

14.89%  
[11.64%, 18.69%]

H1 - H2 90.96%  
[89.57%, 92.31%]

0.85  
[0.83, 0.87]

0.95  
[0.93, 0.96]

0.89  
[0.85, 0.92]

H1 - M 73.68%  
[70.21%, 77.12%]

0.57  
[0.52, 0.62]

0.85  
[0.81, 0.88]

0.63  
[0.53, 0.72]

Zoom (iCatcher+ 
trained on 
Lookit)

0 / 0 / 63 
(712 trials 
in test set)

25.40%  
[20.88%, 29.62%]

H1 - M 85.87%  
[84.31%, 87.31%]

0.46  
[0.41, 0.51]

0.97  
[0.97, 0.98]

—

Note: This table shows information about the number of videos in the training/validation/test split, the number of trials in the test set that both 
humans (H1 and H2) and the model (M) annotated, percentage of frames that humans rated (i.e., during trials in which looking behavior was of 
analytic interest) but was flagged by the model as “INVALID,” and human–human (H1-H2) versus human–model (H1-M) agreement at the level of 
frames (percentage agreement, Cohen’s κ) and trials (intraclass correlation coefficient [ICC] over looking times and percentage looking to the right), 
averaged over videos within each data set. For the four agreement metrics, we present the mean and 95% confidence intervals (CIs) computed 
via bootstrapping over 1,000 iterations. Cohen’s κ is affected by (a) the number of categories and (b) the distribution of observations over those 
categories, so comparisons across data sets on this measure should not be interpreted.

from the Lookit training data set had a second human 
annotator. For model evaluation on held-out videos, we 
designated the “primary” human rater as “Human 1” to 
compute human–model comparison metrics for California- 
BW and Senegal. Because there was no designated pri-
mary rater for the Lookit data set, when two human 
annotations were available, we randomly selected one 
of them to be Human 1.

Overview of dependent measures  
and measures of reliability

All videos included up to 48 (California-BW), 44 (Senegal), 
and 24 (Lookit) trials of data collected in a single experi-
mental session. We used frame-by-frame annotations from 
human raters and iCatcher+ (Fig. 3a) to generate trial-
level dependent measures most relevant to developmen-
tal researchers: preferential looking (PR; proportion 
looking toward the right side of the screen relative to total 
looking on the screen; Fig. 3c) and looking time (LT; total 
time looking toward the screen for Lookit or toward one 
of the two images for California-BW; Fig. 3d). Then we 

compared human–human and human–model agreement 
using metrics familiar to developmental researchers: per-
centage agreement and Cohen’s κ (range = 0–1) over 
frames and intraclass correlation coefficient (ICC; range = 
0–1) over trials. For precise definitions of these metrics, 
see Table S5 in the Supplemental Material. For all of our 
results, metrics are always presented with respect to a time 
interval in which they were explicitly averaged over (e.g., 
frames, trials, videos). Frames that were not annotated by 
one of the annotators (model or human) were not consid-
ered for these comparisons.

Open science practices

The work presented in this article was not formally pre-
registered. However, all training and technical work on 
the network was done without access to results from the 
test set, which was untouched until training and valida-
tion were complete. Throughout this project, when  
we noticed blatant errors in human raters’ annotations 
or other missing information that prevented the model 
from parsing the annotations (e.g., no trial time stamps, 
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mismatches between file names of annotations and vid-
eos), we corrected them.2 The dependent measures and 
reliability metrics were chosen in advance of the results, 
and we did not explore any other measures or metrics, 
except for coefficient of individual agreement (Parker 
et al., 2020), which we dropped because we could not 
find an implemented function from published work. Our 
confirmatory results are the comparisons between 
human–human and human–model agreement on the 
four agreement metrics (percentage agreement, Cohen’s 
κ, ICC for looking duration and preferential looking). 
All data and code required to reproduce the main results 
and figures of the article and plots specific to each video 
in the test set are available at https://zenodo.org/
record/7232828, which is a snapshot of the repository 
found at https://github.com/yoterel/icatcher_plus. The 
raw video files for the Lookit data set are available at 
https://osf.io/yfrkw/ (public data sharing) and https://
osf.io/r7czb/ (scientific data sharing); all videos in this 
set are shared with consent from a legal guardian. The 
raw video files for the California-BW and Senegal data 
sets are not publicly available given restrictions to pro-
tect participant privacy. The data management plan and 
annotation files for all data sets are available at https://
osf.io/ujteb/.

Results

Table 2 and Figure 4 summarize the main findings. For 
examples of representative good and poor performance, 
see Video S1 in the Supplemental Material.

Comparing human–human  
and human–model agreement

Below we compare human–human and human–model 
agreement. Note that these comparisons are computed 
only over frames that both humans and the model 
treated as valid (i.e., for the model, an infant face was 
detected; for humans, the infant was not distracted, other 
adults and children were not interfering, etc.). We report 
more information about invalid frames in the Evaluating 
Failure Modes section. See Figure 5 for a scatterplot 
comparing human-human agreement to human–model 
agreement for all three data sets.

California-BW.  iCatcher+ achieved a near-human mean 
frame-by-frame agreement of 95.11%, bootstrapped 95% 
confidence interval (CI) = [93.56%, 96.33%], over all videos 
in the test set (vs. human–human agreement of 97.78%, 
95% CI = [97.11%, 98.32%]). For trial-level metrics, iCatcher+ 
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achieved near-human performance, with best performance 
for classifying looks as LEFT or RIGHT (average ICC for 
percentage looking = 0.96, 95% CI = [0.93, 0.98] vs. between 
humans 0.99, 95% CI = [0.99, 1.00]) and lower, although 
still excellent, performance for classifying looks as ON (i.e., 
toward either image) or OFF (i.e., toward neither image; 
average ICC = 0.90, 95% CI = [0.86, 0.94] vs. 0.94, 95% CI = 
[0.91, 0.97] between humans).

Senegal.  The Senegal data set, relative to the California-
BW data set, included more variability in setting and light-
ing; the viewing distance was also shorter (2 ft vs. 3 ft). 
iCatcher+ achieved an average of 91% frame-by-frame 
agreement over videos in the test set (90.91%, 95% CI = 
[87.25%, 93.61%]) versus human–human agreement of 
98.05% (95% CI = [97.56%, 98.51%]). At the level of trials, 
iCatcher+ achieved near-human performance on LEFT or 
RIGHT classification (ICC = 0.95, 95% CI = [0.90, 0.98] vs. 
between humans, ICC = 0.99, 95% CI = [0.98, 1.00]) and 
lower but still excellent performance for ON or OFF clas-
sification (ICC = 0.89, 95% CI = [0.83, 0.94] vs. between 
humans, ICC = 0.94, 95% CI = [0.92, 0.97]). For both  
California-BW and Senegal, iCatcher+ was trained to clas-
sify looks in between the two images as AWAY, which the 
model successfully generalized to new videos.

Lookit.  The Lookit data set, relative to California-BW and 
Senegal, included more sources of variability (lighting, 
resolution, camera angle and position, screen size, dis-
tance and position of the participant, background, trials 
during which the infant was fussy or distracted). Both 

human–human and human–model frame-by-frame agree-
ment were lower for Lookit than for the two other data 
sets (see Table 2). iCatcher+ achieved a mean frame-by-
frame agreement of 85.23% (95% CI = [83.46%, 86.97%]) 
over all videos (vs. human–human agreement of 90.99%, 
95% CI = [89.57%, 92.31%]) and a trial-level ICC of 0.95 
(95% CI = [0.93, 0.97]) for LT (vs. human–human ICC of 
0.95, 95% CI = [0.93, 0.97]) and 0.81 (95% CI = [0.73, 0.88]) 
for percentage looking to the right (vs. human–human ICC 
of 0.89, 95% CI = [0.85, 0.92]).

In contrast to the California-BW and Senegal data sets, 
in the Lookit data set, both humans and the model were 
more accurate at classifying looks as ON versus OFF than 
LEFT versus RIGHT (human–human average ICCs for 
looking duration: 0.95, 95% CI = [0.93, 0.97] vs. for direc-
tion: 0.89, 95% CI = [0.85, 0.92], t(44) = 3.45, p = .0012, 
two-tailed, paired t test; human–model: 0.95, 95% CI = 
[0.93, 0.97] vs. 0.81, 95% CI = [0.73, 0.88], t(44) = 3.35, 
p = .0017, two-tailed, paired t test). We speculate that it 
was easier for humans and the model to tell whether the 
infant was looking at the screen than whether the infant 
was looking left or right, which involved classifying 
ambiguous frames when the infants were transitioning 
from looking at one side of the screen to the other.

When viewing distance and angle, camera and video 
resolution, and testing environment were held relatively 
constant in the California-BW and Senegal data sets, 
iCatcher+ showed excellent performance. Although per-
formance was somewhat worse for the Lookit data set, 
the fact that it still approached human-level performance 
is striking because of the vast variability in viewing dis-
tance and angle, screen size, camera resolution, and 
participant positioning. We note that this is the intended 
goal of training: to introduce variability that the model 
is likely to see later on and to fine-tune the model to be 
robust to these features.

Unlike California-BW and Senegal, which consisted 
of videos from entire experimental sessions, the Lookit 
data set contained videos from individual trials that were 
concatenated during postprocessing. Thus, when the 
model averages across a moving window of five frames 
for classification, this moving window within trials con-
tains frames continuous in time, but the same moving 
window across trials contains frames that skip across 
intertrial intervals and thus can introduce discontinuity 
in participant pose, gaze behavior, background, and 
camera angle. To explore whether this lowered perfor-
mance, we calculated the average agreement for 
between-trials versus within-trials intervals per video. 
Accuracy was indeed lower for between-trials intervals: 
When the moving window scrolled over a trial boundary, 
frame-by-frame agreement dropped by an average of 
5%, t(44) = 4.88, p < .001, two-tailed, paired t test (see 
Fig. S10 in the Supplemental Material).
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Comparing iCatcher+ with original iCatcher.  We also  
compared the performance of iCatcher+ with the original 
version of the model published in Erel et al. (2022) on the 
Lookit data set. We focused on the online Lookit data set 
for this comparison because the original iCatcher model 
has already been tested on a lab data set in Erel et al. We 
found that on every metric, iCatcher+ outperformed the 
original model (see Table 2). This suggests that the techni-
cal improvements of the model—including (a) features 
such as participants’ face position and distance relative to 
the camera and random augmentations of frames during 
training and (b) an improved face classifier—are impor-
tant for robust and accurate classification in videos col-
lected online.

Predicting performance given 
participant, video, and model outputs

In the previous section, we reported that iCatcher+ 
achieved good performance for two data sets collected 
by a researcher in a lab or in the field in older infants and 
toddlers (California-BW and Senegal) and a data set col-
lected without a researcher present at all in a home setting 
in younger infants (Lookit). To assess the viability of this 
model as a tool that developmental psychologists can use, 
we care not only about average performance across the 
entire test set but also about performance over variability 
in participant characteristics such as age, gender, race/
ethnicity, skin tone, and eye color; participant behaviors 
such as head movement and position; and video-level 
features such as luminance and pixel density.

Figures S6 through S8 in the Supplemental Material 
show all of these features plotted against human–model 
agreement, and Figure S9 in the Supplemental Material 
shows all of these features plotted against human–human 
agreement. Descriptively, average performance was rea-
sonably robust (> 80% agreement) when looking at vari-
ability for each feature. Although there is still room to 
grow for frame-by-frame classification accuracy for the 
Lookit data set (although note human-level performance 
for both preferential and duration looking in Table 2), 
these findings suggest that the gap in performance 
between the model and human raters is not driven only 
by lower accuracy on videos with participants of a cer-
tain demographic or videos with a certain set of image-
level features.

For every annotated frame, iCatcher+ generates a label 
and a confidence score. One open question is whether 
this learned confidence metric actually corresponds to 
model accuracy. If this confidence score can be used as 
a way of separating easy versus difficult frames, then 
iCatcher+ should be less confident for videos that it clas-
sified incorrectly. This was true for all three data sets (see 
Fig. 6): iCatcher+ provided higher confidence scores for 

frames that it ultimately labeled correctly than frames 
that it labeled incorrectly; Lookit: t(1698.21) = 56.32, p < 
.001; California-BW: t(2321.22) = 63.26, p < .001; Senegal: 
t(1325.50) = 48.02, p ≤ .001 (all two-tailed, Welch’s t test, 
p values generated via permutation).

We ran lasso regressions (Tibshirani, 1996) to explore 
which predictors were most important for predicting 
model performance for each data set and across data 
sets. For this analysis, we chose to study model perfor-
mance at its finest possible level of granularity (frame-
by-frame percentage agreement in every trial) to 
maximize sensitivity. We found that participant and 
video features, such as face position and density, and 
human–human agreement were selected as important 
predictors. Nevertheless, a simple statistical model with 
iCatcher+’s reported confidence as the sole predictor 
(along with a random intercept for subject) already 
explained 62.9% (conditional R2) of the variance in 
human–model agreement compared with 67.0% of 
explained variance in the “best” model, suggesting that 
other predictors explain only a small portion (≈4%) of 
the unique variance in model performance. For details, 
see the Supplemental Material. On balance, these results 
show that we achieved near-human performance on the 
dependent measures that matter most to developmental 
psychologists (LT, percentage looking to the left vs. right, 
that aggregates over frames within a trial), and that con-
fidence scores can be used to identify trials that are 
likely to contain inaccurate annotations. In future work, 
these scores could guide decisions about whether and 
when automated gaze coding should be supplemented 
with human annotation. For example, a future tool can 
allow researchers to specify a confidence threshold—all 
trials or videos that fall under this threshold can then be 
flagged for closer inspection by humans.

Evaluating failure modes

In the two above sections, we reported good model per-
formance in all data sets across variability in video and 
participant characteristics. We also showed that confi-
dence scores from the model are interpretable and 
strongly predict accuracy. In this section, we dig deeper 
into the model’s failure modes in a qualitative way. For 
each data set, we inspected the human and model annota-
tions for 40 videos with low frame-by-frame accuracy 
(lowest 15 for California-BW and Lookit, lowest 10 for 
Senegal). For each video, we identified frames in which 
the iCatcher+ classification of looking behavior differed 
from one or both human raters. We then inspected the 
video segments corresponding with these frames and 
summarized what was happening in the video during 
these segments and what may have caused the disagree-
ments between iCatcher+ and the human raters (for the 
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raw, tabulated, qualitative data, see https://osf.io/zquys). 
Overall, we found two general failure cases (no faces 
detected, faces detected but labeling was incorrect), 
which we describe below. We also observed cases in 
which iCatcher+ classifications agreed with annotations 
from Human 2 more so than from Human 1 when the 
two human coders did not agree (agreement and other 
metrics were always calculated between Human 1 and 
the model).

No face found (“INVALID”).  The first failure case is 
when iCatcher+ failed to detect any face in the frame and 
thus could not even get started with annotation (average 
proportion of ≈15%–20% of frames in each data set; see 
Table 2). Through visual inspection, a majority of invalid 
frames were frames in which the participant was par-
tially or completely turned away from the screen or the 

participant’s face was partially or completely occluded 
(e.g., due to participants rubbing their eyes, putting their 
hands in their mouths, lowering their face into a caregiv-
er’s shoulder, or cases where participants were positioned 
partially or fully outside of the camera’s view, and moved 
so close to camera that parts of their faces were off screen; 
for examples from one Lookit video, see Fig. 3b). Because 
iCatcher+ needs to detect a face first in order to return a 
label (AWAY/LEFT/RIGHT) for that face, the model returns 
a label of INVALID for these frames; in fact, in many of 
these cases, the participant was not looking toward the 
screen. A smaller portion of invalid frames was from vid-
eos with dark lighting or shadows that made infants’ eye 
movements difficult to track. There were also a few cases 
with poor video quality (e.g., the video was grainy or part 
of the video frame was blurry; see Video S1 in the Supple-
mental Material).
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To test whether these cases, in part, drive underper-
formance of the model, we compared frame-by-frame 
agreement over all valid frames in the test set when we 
replaced all frames labeled by iCatcher+ as INVALID 
(i.e., NOFACE or NOBABYFACE) with the label AWAY. 
Across all data sets, we found that replacing INVALID 
frames with AWAY increased ON versus OFF perfor-
mance (for agreement on AWAY, from 76.13% to 83.04% 
for California-BW, 78.87% to 82.41% for Senegal, and 
76.92% to 88.82% for Lookit), at the expense of a 5% to 
10% hit in performance on classifying LEFT versus 
RIGHT (see Figs. S3–S5 in the Supplemental Material). 
Thus, for all three data sets, iCatcher+ can either achieve 
near-human frame-by-frame performance on LEFT ver-
sus RIGHT classification or near-human performance on 
ON versus OFF classification but currently cannot 
accomplish both simultaneously.

Face found but incorrect label.  The remaining failure 
cases are those in which the face selector and classifier 
identified a face but outputted an incorrect label. We 
found that these failure cases could be roughly catego-
rized as (a) edge looking behavior and (b) movement. 
First, there were instances in which the infant looked very 
far to the left or right such that the model classified these 
looks as AWAY, whereas human raters classified these 
looks as LEFT versus RIGHT, or in Lookit, cases in which 
the infant was looking toward the center of the screen, in 
between the stimuli, and the model and humans disagreed 
about whether that look corresponded to looking in the 
right versus left side of the screen. Second, disagreements 
occurred during frames with a lot of movement, generated 
either by the child or by the caregiver repositioning the 
child. In one additional instance (the video in Fig. 2), 
other children were present in the video and the infant’s 
face was partially occluded, resulting in labels of the other 
children’s looks as opposed to the infant’s looks.

Far generalization to entirely held-out 
online data set

So far, our results show that when iCatcher+ is trained 
on a specific data set, it can generalize to held-out vid-
eos from that same data set. How would the model 
perform on an entirely new data set with no further 
retraining? To answer this question, we conducted a test 
of far generalization as a proxy for what developmental 
researchers can expect if they use iCatcher+ on their 
own online data set. We took the network that was 
trained on the Lookit videos and, with no further train-
ing, ran inference on a different set of webcam videos 
(hereafter referred to as Zoom). The Zoom data set con-
sisted of 63 videos from infants ages 7 to 10 months that 
roughly matched the demographics of the participants 

in the Lookit data set (74% White, 26% other), collected 
via synchronous video conferencing and recorded at a 
higher resolution than the Lookit videos (1280 × 720 
pixels for Zoom vs. 640 × 480 pixels for Lookit). The goal 
of the Zoom study was to evoke different degrees of 
habituation and dishabituation of looking times as a 
target for computational modeling (Cao et al., 2022). In 
this study, participants saw six pairs of familiarization 
and test events. Each familiarization consisted of a pre-
sentation of a visual stimulus at the center of the screen 
for varying durations, and the test event consisted of a 
presentation of either the previously shown familiariza-
tion stimulus or a completely new stimulus. A naive 
human rater annotated looking times for each trial. For 
details about the annotation scheme for the Zoom data 
set, see Table S4 in the Supplemental Material (coding 
procedures available at https://osf.io/yqr6b).

Despite differences in the research topic (intuitive 
physics in Lookit, habituation/dishabituation in Zoom), 
primary dependent measure (preferential looking in 
Lookit, looking duration in Zoom), and primary body 
posture (infants held over their caregivers’ shoulders in 
Lookit, infants sat on their caregivers’ laps or in a high 
chair in Zoom; 57% high chair, 40% lap, 3% other), the 
model trained only on the Lookit videos performed well 
on the Zoom data set (Table 2). Although iCatcher+ had 
never seen a video from the Zoom data set before evalu-
ation, it achieved average human–model frame-by-frame 
agreement of 85.87% (95% CI = [84.31%, 87.31%]), 
roughly equal to the same metric in the Lookit videos. 
Most importantly, iCatcher+ produced trial-level looking 
times, the dependent variable used in this experiment, 
that were comparable with human-generated looking 
times (Fig. 7a; ICC = 0.97, 95% CI = [0.97, 0.98]) and 
comparable with performance on the same measure in 
the Lookit test set (Table 2; ICC = 0.95, 95% CI = [0.93, 
0.97]). Although high overall agreement could, in prin-
ciple, hide failure to perform well on a small fraction of 
videos, instead we found that iCatcher+ showed good 
correspondence with human annotations across all  
videos in the Zoom data set (Fig. 7b). This suggests that 
the pretrained Lookit model (available at https://github 
.com/yoterel/icatcher_plus) can be used with no further 
retraining for automated, reliable annotation of new vid-
eos collected via Lookit or over live video conferencing, 
especially for studies that use looking duration as the 
primary dependent measure.

Discussion

Developmental psychology aspires to build and test 
theories of the mind by studying infants and young 
children. In the past decade, the field has developed 
techniques for collecting data faster than ever before, 

https://osf.io/yqr6b
https://github.com/yoterel/icatcher_plus
https://github.com/yoterel/icatcher_plus
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potentially from a vastly larger and broader set of par-
ticipants. Our toolkit has expanded to include online 
testing (Chuey et al., 2021; Scott & Schulz, 2017), large-
scale replication (Frank et  al., 2017), and meta- and 
mega-analysis of existing data (Koile & Cristia, 2021; 
Tsuji et al., 2017). Developmental psychology has also 
partnered with the field of computational cognitive sci-
ence to formalize theories about knowledge and learn-
ing and design tests of those theories (Lake et al., 2017; 
Shu et al., 2021; Smith et al., 2019; Tenenbaum et al., 
2011). But for the field to make the most of these tools, 
researchers need a faster way of annotating looking 
behavior—the primary measure in developmental behav-
ioral studies—from video, including videos collected 
online. In this article, we built on iCatcher (Erel et al., 
2022), a system for gaze classification previously trained 
and tested on one data set collected in the lab and tested 
its performance on three other data sets, chosen to rep-
resent diverse research settings (university labs, in field 
sites, in homes) and participants (varying in age, race, 
and ethnicity).

Overall, we found that iCatcher+ achieved excellent 
performance on classifying looking behavior as LEFT 
versus RIGHT, with near-human frame-by-frame perfor-
mance on the data sets collected in a university lab set-
ting or a mobile lab setting in various field sites 
(California-BW, Senegal) and somewhat lower frame-by-
frame accuracy on the data set collected online (Lookit). 
Even so, we consider the Lookit results to be a success 
because despite many sources of between-videos vari-
ability, trial-level human–model agreement, aggregated 

across frames, approached human performance, with 
room to grow. We found that performance did not vary 
substantially by age, gender, race and ethnicity, lighting 
conditions, face movement and position, and face pixel 
density; the single best predictor of accuracy was model 
confidence. The most common failure case was that 
iCatcher+ could not detect a face in the frame (and 
returned a label of INVALID), and inspection of these 
frames revealed that these are time points during which 
infants were turned away from the screen or covering 
their faces. Across all data sets, by swapping out these 
INVALID frames with the label AWAY, we found that 
iCatcher+ could classify ON versus OFF looks, or LEFT 
versus RIGHT looks, with near-human accuracy, but not 
both at the same time. Most compellingly, the model that 
was trained on the Lookit data set returned reliable 
annotations for a fourth, entirely held-out data set of 
videos from online research that it had never seen 
before. From these findings, we conclude that iCatcher+ 
meets the criteria of accuracy and robustness stipulated 
in the introduction, and thus we believe that this tool 
can be adopted by developmental psychologists to sup-
plement or replace human annotation sometime in the 
near future.

Limitations and qualifications

The current research has limitations and qualifications. 
First, although we have shown good performance on 
held-out videos sampled from the same distribution as 
the training set (i.e., performance on Lookit videos, 
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given a network trained only on Lookit videos) and 
generalization to a separate data set (i.e., performance 
on Zoom data set, given a network trained on Lookit 
videos), this generalization surely has a limit. The high 
performance in the Zoom data set, although promising, 
could have been driven by the higher resolution of the 
videos, the presence of an experimenter to monitor for 
setup and data quality, and/or other features. We empha-
size again that in the absence of random assignment 
across these features, it is not possible to pinpoint the 
cause(s) of differences or similarities in performance 
across the data sets presented in this article. Within each 
data set, we found that performance for both humans 
and the model was relatively robust to participant demo-
graphics, video luminance, participant pose and move-
ment, and pixel density of the face (affected by camera 
resolution, viewing distance, and head size; see Figs. S6 
and S7 in the Supplemental Material). However, it is 
plausible that there are video features that affect annota-
tion accuracy we were unable to examine in the current 
article, including screen size (constant for California-BW 
and Senegal and not collected for Lookit or Zoom) and 
camera resolution (not available for California-BW or 
Senegal and not collected for Lookit or Zoom). We 
emphasize that because iCatcher+ ultimately processes 
images at the pixel level, developmental researchers 
whose setups or participants differ substantially from 
the data sets in this article should expect a drop in 
performance.

Second, our qualitative error analysis has shown that 
the face classifier works best when the participant’s face 
is not covered up, in shadow, or moving quickly. Infants 
and toddlers cannot be instructed to avoid these behav-
iors. If developmental labs seek to add iCatcher+ to their 
research protocols, they will have to consider how to 
maximize the quality of their video data and whether or 
when human raters should be included in the process. 

Third, by design, iCatcher+ was trained to classify 
looking behavior into three categories (LEFT, RIGHT, 
and AWAY) over an entire trial rather than as a continu-
ous vector projected to a point on the screen or looking 
to different areas of interest over time. Thus, it is best 
suited for experiments that use duration looking and 
preferential looking as primary dependent measures. 
However, this framework could plausibly be extended 
to include more precise classification over continuous 
space (e.g., see Werchan et  al., 2022) and time (e.g., 
looking behavior time-locked to the onset of a stimulus 
or in anticipation of an outcome). We leave this direction 
to future research and welcome contributions to the 
open-source codebase (https://github.com/yoterel/
icatcher_plus).

Ongoing and future work

Fine-tuning to calibration frames before annotation.  
When humans annotate videos of infant looking behavior, 
they are instructed to inspect a series of calibration frames 
in which the participant’s gaze was attracted to different 
locations on the screen or on and off the screen. With 
compelling enough calibration stimuli, the direction of an 
infant’s gaze can be reliably expected to fall on specific 
locations on the screen at specific time intervals. Human 
raters use these calibration frames to make judgments 
about edge cases (e.g., In Frame X, is the infant looking 
below or at the bottom of the screen?). Currently, iCatcher+ 
does not take advantage of this strategy—the model is not 
provided with any information about the specific video to 
be annotated before classification. However, future ver-
sions of the model could leverage the technique of net-
work personalization in which a pretrained model is 
fine-tuned using a few frames to specialize the model for 
that particular participant and research setting. This pro-
cess involves adjusting the weights of the pretrained 
model in response to frames from the to-be-classified 
video. Park et al. (2019) introduced FAZE (few–shot adap-
tive gaze estimation), a framework using model-agonistic 
metalearning (Finn et al., 2017) that takes this approach 
and reports promising results on videos of adults. The 
authors reported boosts in accuracy of gaze classification 
faces that the network was not trained on when the net-
work was first fine-tuned to a small (fewer than nine) 
number of randomly selected frames of the new face. In 
the future, we can imagine adding metalearning to the 
iCatcher+ pipeline in which the model is either given ran-
dom frames or high-quality calibration frames from a new 
video before classification.

Building out the tool.  Although the current iCatcher+ 
codebase is open source and freely available at https://
github.com/yoterel/icatcher_plus, it still has a way to go 
before it is a user-friendly tool. Command-line interfaces 
can present an obstacle for researchers with less techni-
cal knowledge and experience, and as the tool continues 
to evolve, distributing releases over github likewise 
requires skills that some researchers may not possess. 
Thus, we are currently working on designing a web app 
that will be accessible to researchers regardless of techni-
cal training.

Integration with Lookit.  So far, Erel et al. (2022) and 
the current article have shown that iCatcher+ can be 
adopted as a tool for annotating videos of gaze behavior 
once these videos have been collected. However, as  
mentioned in the introduction, iCatcher can also run in 
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“online mode,” wherein the model classifies gaze behavior 
from an incoming video stream in real time. In Erel et al., 
the authors reported performance using this “live” mode, 
which classified a video frame every ≈42 ms (or 24 frames 
per second, close to the actual frame rate of the videos). 
Our tests have shown iCatcher+ can process each frame 
faster, roughly every ≈22 ms (45 frames per second) using 
a midtier GPU (NVIDIA GeForce RTX 2060) or every ≈59 
ms (17 frames per second) without one. This can allow 
integration into Lookit or other frameworks for fully auto-
mated data collection and enable experimental designs, 
including infant-contingent stimulus presentation, that are 
currently not possible to run on Lookit. Although fully 
automated online data collection of gaze behavior in 
infants and children remains a distant goal, the current 
work represents a critical move forward.

Considerations for developmental 
researchers interested in using 
iCatcher+

Overall, we believe that iCatcher+ can be adopted by 
developmental psychologists in the very near future to 
supplement or replace human annotation for many 
research programs. It performs with near-human accu-
racy, and its failure modes and confidence scores are 
interpretable: iCatcher+ reports when it cannot detect a 
face in general or an infant face specifically and provides 
lower confidence scores for frames it is likely to misclas-
sify. We envision a pipeline of automated annotation 
that takes a video and an event file including time stamps 
and types of each trial (e.g., expected, unexpected, tar-
get object on the left) and then returns (a) frame-by-
frame (or time bin-by-time bin) annotations of gaze 
behavior (either LEFT/RIGHT/AWAY, or ON/OFF, and 
NOFACE, NOBABYFACE) and (b) confidence scores 
(0–1) for each annotation. Developmental-psychology 
labs can then take this information and design appropri-
ate protocols for interpreting and analyzing these data.

iCatcher+ will not eliminate all barriers to analyzing 
infant and toddler gaze data, but we expect that most 
labs will be able to adapt their practices to smoothly 
transition to machine labeling. Many of these changes 
can be initiated immediately: For instance, labs can 
modify their data-collection protocols and instructions 
to minimize the chances that infants’ faces will be par-
tially or fully occluded (a key failure mode of iCatcher+). 
Second, labs should consider stimulus-presentation 
methods that automatically produce event time stamps. 
Tools with these capacities include jsPsych (de Leeuw, 
2015), pyHab (Kominsky, 2019), Psychtoolbox (Borgo 
et al., 2012), and Lookit (Scott & Schulz, 2017). Lookit 
users should consider feeding each trial of data to the 
model individually rather than a video of concatenated 

trials because of drops in performance when the model 
averages discontinuous frames from different trials. 
Third, labs should consider how they would interpret 
iCatcher+ output, potentially in combination with human 
ratings. For example, a lab protocol could stipulate that 
a human rater go back to annotate trials for which the 
mean iCatcher+ confidence score falls below 0.85  
or a face was not found for more than half the frames. 
The protocol could also define thresholds for excluding 
trials or participants from further analysis using these 
metrics.

Finally, when possible, labs should explicitly evaluate 
the trade-offs of time and expense for hand-coding data 
versus running more participants to compensate for the 
potential added noise of machine labeling. Erel et al. 
(2022) showed that it is possible to replicate a key result 
from an LWL study, originally generated from human-
rated video data, using iCatcher. In the current work, 
the human-level ICC scores for both dependent mea-
sures (preferential looking and duration looking) for 
held-out videos from the California-BW, Senegal, and 
Lookit data sets, and for the entirely held-out Zoom data 
set, suggest that researchers should expect iCatcher+ to 
be as accurate as a trained human rater across trials but 
worse than a human rater at the level of frames. How-
ever, the impact of noise (from human or machine raters) 
will vary across phenomena and paradigms. Because 
there is currently no consistent reporting of effect sizes 
or standards for reporting the reliability of LT data in 
published developmental research, it is difficult to pre-
dict how many additional participants should be run for 
a study using iCatcher+ annotation for a given effect or 
method. However, it may be more efficient to collect 
and automatically label data from more infants than it 
would be to hand-code a smaller sample. With iCatcher+ 
and these new research protocols in hand, this frame-
work can enable rapid, adequately powered research 
into the origins of the human mind for all developmental 
scientists.
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Notes

1. The Lookit sample contained many fewer unique children (83 
vs. 214 in California-BW vs. 143 in Senegal), thus we sampled a 
greater proportion to ensure sufficient variability in the training 
set.
2. In the Lookit data set, 11 files required changes to the trial or 
looking-behavior labels (e.g., missing “instructions,” extra “left,” 
frame numbers contained a letter); 12 files were missing annota-
tion of final “end,” so we needed to verify total number of frames; 
and one annotation file was discarded and reannotated by a new 
person because it was missing annotations for a majority of the 
trials. In the California-BW data set, one file required a change 
in label because of a typo, and a small number of files required 
the manual addition of a new time stamp to indicate the start 
time of the experiment. In the Senegal data set, all video files 
were trimmed by 2 s to 11 s to sync the first frame of the time 
stamp with the first frame of the video. Although human annota-
tors for all data sets were well trained, this process revealed to 
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us an even greater need for automated gaze annotation, which 
minimizes opportunity for human error.
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