Brief article

Individual differences in nonverbal prediction and vocabulary size in infancy

Tracy Reuter*a, Lauren Embersonb, Alexa Rombergc, Casey Lew-Williamsd

aDepartment of Psychology, Princeton University, USA
bDepartment of Human Development and Quantitative Methodology, University of Maryland-College Park, USA

doi.org/10.1016/j.cognition.2018.03.006

1. Introduction

Human processing of complex information is facilitated by prediction (Bar, 2007; Summerfield & de Lange, 2014). Humans make predictions in many domains, such as vision (Rao & Ballard, 1999; den Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Summerfield & de Lange, 2014), locomotion (Wolpert, Miall, & Kawato, 1998; Wolpert, Ghahramani, & Flanagan, 2001), and language (Rabagliati, Gambi, & Pickering, 2016). In language, prediction enables efficient processing among both adults and children, allowing listeners to keep pace with the rapid information flow of speech (DeLong, Urbach, & Kutas, 2005; Kutas, DeLong, & Smith, 2011; Borovsky, Elman, & Fernald, 2012; Pickering & Garrod, 2013).

In addition to its role in language processing, prediction may also be a mechanism that facilitates language learning. In error-based models of language learning, learners compare predicted input with actual input to gain information about the structure of their language (Chang, Dell, & Bock, 2006; Elman, 1990; Pickering & Garrod, 2013). For example, a child might expect to hear the word 'mouses' but instead hear 'mice,' and update future predictions accordingly (Ramscar, Dye & McAuley, 2013). There are two types of evidence that these models may be valid descriptions of learning. First, it is well-established that children generate predictions during language processing. They are capable of drawing upon many types of linguistic information to anticipate what a speaker is likely to say next, such as phonology (Swingley, Pinto, & Fernald, 1999), semantics (Fernald, Zangl, Portillo, & Marchman, 2008; Fernald, Thorpe, & Marchman, 2010; Mani & Huettig, 2012), morphosyntax (Lew-Williams & Fernald, 2007; Borovsky et al., 2012; Lukyanenko & Fisher, 2016), and speakers’ intentions (Kidd, White, & Aslin, 2011). Second, there are individual differences in the extent to which children generate verbal predictions, and these differences are related to children’s language proficiency. Compared to children with smaller vocabularies, children with larger vocabularies are more likely to generate predictions in light of new linguistic information (Nation, Marshall & Altman, 2003; Borovsky et al., 2012; Mani & Huettig, 2012). Thus, in line with error-based models of learning, children who generate more verbal predictions and update those predictions efficiently have more advanced language abilities.

This research suggests that children can use multiple sources of information to anticipate downstream words and revise predictions as new linguistic information arrives. Although findings of this nature establish a link between prediction and language learning, they present an interpretational problem. There are a number of plausible explanations: One possibility is that verbal prediction is a capacity that supports vocabulary growth (see Elman, 1990). As reviewed above, prediction...
errors can be used to modify the learner’s representations of their language, making future predictions increasingly accurate. In contrast, a second possibility is that verbal prediction is strictly an outcome, rather than a cause, of vocabulary growth (Rabagliati et al., 2016). That is, language users may only begin to generate predictions once they have a fair amount of linguistic knowledge. Evaluating these two possibilities, as well as intermediate views, will aid in understanding the role of prediction in language processing and learning.

To further examine the relation between prediction and language learning, we used two new approaches. First, we focused on infants between 1 and 2 years of age. Previous studies showing links between prediction and vocabulary have tested children between 2 and 7 years who already comprehend and produce multword sentences. If prediction plays a role in supporting the initial stages of language learning, then infants’ prediction abilities should already be linked to their budding linguistic knowledge. Second, in the current study we evaluated whether prediction as a domain-general capacity may be related to language learning. That is, we did not aim to replicate previously established relations between verbal prediction and vocabulary. Instead, based on views of prediction as a general capacity that is present in multiple domains and possibly interacts across domains (Bar, 2007; Luyten & Clark, 2015), we examined relations between nonverbal (i.e., visual) prediction and vocabulary size. We reasoned that differences in nonverbal prediction, as compared to verbal prediction, are less likely to be the direct result of vocabulary differences. This cross-domain approach represents a new direction for understanding the relation between prediction abilities and language proficiency.

Our investigation of how infants make and update nonverbal predictions included two main hypotheses. First, we hypothesized that the quantity of predictions that infants generate in a nonverbal task would be linked to vocabulary. Among older children, those with larger vocabularies, as compared to those with smaller vocabularies, are more likely to make verbal predictions (Nation, Marshall, & Altmann, 2003; Borovsky et al., 2012; Mani & Huettig, 2012). We expected that this relation would hold earlier in development and apply to the domain of nonverbal prediction. Second, we hypothesized that the quality of infants’ nonverbal predictions would be linked to vocabulary. In error-based models, learners update predictions when they encounter incongruent information (Chang et al., 2006). Assuming these models are relevant for explaining learning toward the beginning of life, we expected that infants with larger vocabularies would be more successful in updating nonverbal predictions after observing unexpected information.

To evaluate these hypotheses, we tested 12- to 24-month-old infants in a visual prediction task, using anticipatory eye movements (AEMs) as a measure of prediction. In a second eye-tracking task, we controlled for differences in infants’ speed of visual processing. We compared performance on these tasks to infants’ vocabulary size (MCDI). Together, we used these measures to evaluate whether and how nonverbal prediction abilities relate to infants’ early language development.

2. Method

2.1. Participants

Participants were 50 infants (26 female) from monolingual English-speaking families who ranged in age from 12 to 24 months \((M = 18, SD = 3.5) \). Infants were full-term and had no known vision or hearing impairments. We excluded an additional 14 infants from all analyses due to parental report of developmental delay (1), bilingual language exposure (2), fussiness such that less than 50% of trials were code-able (8),

\[t = (8.58) = 0.06, p = 0.95, \text{MCDI comprehensive vocabulary size} t = (11.26) = 0.63, p = 0.54, \text{or MCDI productive vocabulary size} t = (11.71) = 0.40, p = 0.695. \]

We compared age and vocabulary measures for excluded and included infants, and found no differences in \(t \) values.

2.2. Stimuli – Prediction task

On each trial, infants saw a central, looming fixation paired with a slide-whistle sound for 1500 ms. After an 800-ms delay, infants saw a peripheral, spinning target paired with another slide-whistle sound for 1000 ms (Fig. 1). Importantly, infants saw two blocks of trials. In the first block (trials 1–8), the target always appeared on one side, and in the second block (trials 9–16) its location switched sides. Block 1 target location was counterbalanced across infants.

On each trial, we measured infants’ anticipatory eye movements (AEMs). As shown in Fig. 1, we conservatively defined AEMs as looks to either peripheral location during a time window from 200 ms before to 200 ms after target onset for each infant.

2.3. Stimuli – Visual processing task

On each trial, infants saw a central fixation for 1000 ms, followed by a peripheral target for 1000 or 1250 ms (Fig. 2). Infants saw two types of trials. On gap trials, there was a 250-ms temporal gap between fixation offset and target onset. On overlap trials, there was a 250-ms temporal overlap between the fixation and the target. Unlike the prediction task, the target location did not follow a consistent pattern. Thus, infants were unable to accurately predict the target location. Trials appeared in one of two quasi-randomized orders, such that neither trial type (gap or overlap) nor target side (right or left) repeated for more than 3 trials sequentially. Fixation and target were stationary, and there were no auditory stimuli.

On each trial, we measured infants’ reaction time (RT), defined as the time of the first target look occurring 200 ms or later after target onset (Fig. 2, “RT measure”). On overlap trials, the central stimulus
3. Results

We hypothesized that infants with larger vocabularies would make more predictions and would update predictions more readily than infants with smaller vocabularies. To evaluate these hypotheses, we correlated infants’ productive vocabulary percentile (MCDI) and anticipatory eye movements (AEMs) during the prediction task. We excluded trial 1 from all analyses, as there was no basis for infants to generate predictions therein. We also compared high-vocabulary and low-vocabulary groups, based on a median split in MCDI scaled scores. Finally, we analyzed visual processing speed to evaluate alternative explanations for individual variability in infants’ performance on the prediction task.

3.1. Prediction task

To evaluate whether infants with larger vocabularies generated more predictions overall (regardless of accuracy), we first correlated infants’ vocabulary size with their proportion of total trials with an AEM to either location. There was striking variation in both vocabulary size (MCDI percentile range = 5–99, M = 42, SD = 28) and proportion of trials with an AEM (range = 0–100, M = 55, SD = 29). Including all infants, regardless of how many AEMs they generated, we found no correlation between infants’ vocabulary size and overall proportion of trials with an AEM \(r(48) = -0.03, p = 0.82 \) nor in Block 2 \(r(47) = -0.17, p = 0.23 \). Thus, contrary to our first hypothesis, infants with relatively larger vocabularies were not more likely to anticipate the target’s appearance.

To test our second hypothesis, that infants with larger vocabularies would update predictions more readily, we classified AEMs in Block 2 as directed toward the novel location (i.e., the Block 2 target location) or the familiar location (i.e., the Block 1 target location). Trial 9 was excluded from this analysis, because this was the first trial in which the target appeared in the novel location. Thus, infants had no basis for directing an AEM to the novel target location on this trial. Infants who did not make any AEMs in Block 2 \(n = 8 \) or who did not have any code-able trials \(n = 1 \) were not included in this analysis. For each infant, we calculated the proportion of their AEMs that were to the novel location (i.e., novel AEMs divided by total AEMs).

We found a significant correlation between infants’ vocabulary size and the proportion of their AEMs to the novel location \(r(39) = 0.34, p = 0.028 \). Consistent with our second hypothesis, when making an AEM in Block 2, infants with larger vocabularies were more likely to make an AEM to the novel target location than infants with smaller vocabularies (Fig. 3). By comparison, in Block 1, 98% of infants’ AEMs were directed to the correct peripheral target location, and there was no correlation between correct AEMs in Block 1 and vocabulary size \(r(42) = 0.24, p = 0.12 \).

To examine the time-course of prediction updating, we analyzed AEMs trial by trial in Block 2. We divided infants into high-vocabulary and low-vocabulary groups based on a median split in MCDI percentile scores (high vocabulary: \(n = 22, M = 64, SD = 19 \); low vocabulary: \(n = 19, M = 17, SD = 9 \)). Then, on each trial we calculated the proportion of AEMs to the novel location as the number of infants who made an AEM to the novel location divided by the number of infants who made AEMs to either location (Fig. 4). A binomial test was used to test this proportion against a chance value of 0.5. The low-vocabulary group only performed above chance on trial 16 \(p = 0.039 \), making significantly more AEMs to the novel than the familiar location. The high-vocabulary group was marginally above chance in trial 13.
M = target on overlap trials when there was a competing stimulus than on First, we con
di

3.2. Visual processing task
3.2. Visual processing task

of AEMs to the novel target location in Block 2 of the prediction task \(r(48) = -0.25, p = 0.08 \). There was no correlation in Block 1 \(r(48) = -0.23, p = 0.11 \) or in Block 2 \(r(47) = -0.22, p = 0.13 \). Finally, there was no correlation between infants’ age and the proportion of their AEMs to the novel location in Block 2 \(r(39) = 0.10, p = 0.52 \).

To assess whether nonverbal prediction varied as a function of age, we repeated the above correlations with infants’ age in months as a factor. We found no correlation between infants’ age and overall proportion of trials with an AEM \(r(48) = 0.092, p = 0.039 \). Above chance in trial 14 \(p = 0.006 \), and above chance in trial 16 \(p = 0.039 \).

4. Discussion
4. Discussion

The gap-overlap task allowed us to examine whether individual differences in AEMs were due to differences in visual processing speed. First, we confirmed that infants were slower to shift their eyes to the target on overlap trials when there was a competing stimulus than on gap trials when there was no competing stimulus \(\text{gap trials: } M = 408 \text{ ms, } SD = 31; \text{ overlap trials: } M = 509 \text{ ms, } SD = 74; \text{ two-tailed } t(42) = -10.4, p < .001 \). Next, we computed RT difference scores for each infant (i.e., overlap trials minus gap trials) and used this difference score as the measure of visual processing speed independent of prediction. We found no correlation between infants’ RT difference scores and their proportion of AEMs overall \(r(40) = -0.09, p = 0.56 \) and no correlation between infants’ RT difference scores and their proportion of AEMs to the novel target location in Block 2 of the prediction task \(r(33) = 0.18, p = 0.29 \). Together, these findings suggest that infants’ performance on the prediction task was not related to variation in or-

general prediction abilities (see Bar, 2007; Summerfield & de Lange, 2014). Second, we show that the ability to update predictions in infancy – and to not perseverate with previously learned predictions – may be particularly important for learning. Infants with larger vocabularies did not generate more predictions overall, but they updated predictions quickly in light of new information. Together, these findings suggest that prediction capacities beyond the domain of language are relevant for understanding early vocabulary growth, and that the quality of predictions (i.e., updating) rather than quantity of predictions (i.e., overall tendency to predict) might support vocabulary growth.

How might infants’ abilities to flexibly update predictions support language learning? Updating predictions to adapt to changes in the environment is a central feature of error-based learning models (e.g., Rescorla & Wagner, 1972). In such models, predictions are not static. Rather, predictions are continuously updated in light of new information, so that the learner can generate more accurate predictions in the future. Updating predictions may enable infants to better represent the shifting statistics of the input, incrementally generating more precise predictions as they gain more information. In contrast, maintaining the same predictions throughout learning may block infants from process-

ing and encoding novel information. Individual differences in infants’ abilities to update predictions may operate from early in infancy and contribute to gains in a variety of domains, including language.

However, it is not clear what causes early differences in prediction abilities. One possibility is that learning from more variable input en-
courages infants to update predictions more frequently. Dynamic, rich experience with objects, people, and language could reinforce the benefits of attending to and learning from new information. Supporting this view in a laboratory context, Romberg and Saffran (2013) found that infants who received variable input in an audio-visual learning task updated predictions more readily than those who received determin-

istic input. Similarly, Kovács and Mehler (2009) found that bilingual infants, as compared to monolinguals, rapidly updated predictions in a nonverbal task. In both experiments, there was variation in prediction updating, much like the present findings; some infants never updated predictions despite the fact that their predictions were consistently incor-

correct. Thus, learning from more variable input may encourage pre-
diction updating. Another possibility is that the relation between pre-
diction and language learning is mediated by related cognitive capacities, such as executive function (Kovács & Mehler, 2009) or working memory (Mani & Huetting, 2013; Huetting & Janse, 2016).

Further experiments are needed to fully characterize the connections between prediction and language learning, by taking into account both linguistic and nonlinguistic factors and by considering plausible third variables. Here, we suggest that a more general framework of predictive information processing, especially one that captures how learners up-

date predictions, will be fruitful in understanding how infants begin learning patterns in the world, including language.

Acknowledgements
Acknowledgements

This research was funded by grants from the National Institute of Child Health and Human Development to Casey Lew-Williams (R03HD079779) and to Lauren Emerson (ROH070676166-02). We thank the participating families and members of the Princeton Baby Lab. We are especially grateful to Jean Bellamy and Fernanda Fernandez for coding.

Appendix A. Supplementary material
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cognition.2018.03.006.

Stimuli, data, and R code are available on Dataverse (doi: http://dx. doi.org/10.7910/DVN/GFVHHS).